Operon structure as IGC evidence

Michelle Gwinn, TIGR curators; 2007

Genes in prokaryotic organisms are often arranged in operons. Genes in an operon are all transcribed into one mRNA. Generally the genes in the operons code for proteins that all have related functions. For example, they may be the steps in a biochemical pathway, or they may be the subunits of a protein complex. Often the genes in operons shared between organisms are syntenic; that is, the same genes are in the same order in the operon in different species. When assessing sequence-comparison-based evidence during the process of manual annotation of a genome, it is often the case that some of the genes in the operon will have strong sequence-based evidence while others will have weak evidence. If seen alone, not in the presence of an operon, the weak evidence in question may not be sufficient to make a functional annotation. However, in the presence of an operon in which there is strong evidence for some of the genes, the very presence of the gene in the operon is a strong indication that the gene shares in the process carried out by the operon. If the putative function is one expected to exist for the process in question and particularly if that function has been observed in the same operon in another species, then the annotation should be made. This type of evidence is inferred from the context of the gene in an operon, and therefore the evidence code is IGC “inferred from genomic context.”